nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.36 53-57+108
盐渍化土壤水分微波遥感反演方法研究与解析
基金项目(Foundation): 国家自然科学基金“盐渍化农田根层土壤水盐多源遥感数据同化与模拟”(项目批准号52069020); 自治区人才开发基金2021年度高层次人才项目“透水铺装材料对北方初期雨水污染物截留效果的影响研究”(内人社办发[2021]171号)
邮箱(Email):
DOI: 10.16647/j.cnki.cn15-1369/X.2024.03.010
摘要:

土壤水分是农田粮食产量和质量的关键影响因素,高精度大面积的土壤含水量的反演对于评价不同地区的土壤质量、估产、灌溉等具有重要意义。合成孔径雷达(SAR)是当前进行土壤含水率反演的重要手段之一,但盐渍化农田的土壤含水率SAR反演方法目前还未明确。本文利用Radarsat-2全极化影像结合内蒙古河套灌区农田实地监测数据,构建了盐渍化土壤的含水率的SAR反演模型。首先提取了四种极化方式的后向散射系数,之后通过建立不同后向散射系数组合与土壤水分的线性回归模型的方式,将反演数据与实测数据进行对比,发现HH-VV极化方式取得了较高的精度,最终利用同极化比构建的模型反演了土壤含水率,反演值的均方根误差达到2.23%,其精度能够满足农田土壤含水率反演精度要求。

Abstract:

Soil moisture is a key factor affecting grain yield and quality in farmland. The inversion of soil moisture with high precision and large area is of great significance for evaluating soil quality, yield estimation and irrigation in different regions. Synthetic aperture radar(SAR) is one of the most important methods for soil moisture retrieval at present, but the method for soil moisture retrieval in salinized farmland is not clear at present. In this paper, a SAR inversion model of salinized soil moisture was constructed by using Radarsat-2 fully polarized image combined with field monitoring data in Hetao irrigation area of Inner Mongolia. First, the back-scattering coefficients of the four polarization modes were extracted, and then the inversion data was compared with the measured data by establishing a linear regression model of the combination of different backscattering coefficients and soil moisture. It was found that the HH-VV polarization mode achieved high accuracy, and finally the soil water content was retrieved by using the model constructed by the same polarization ratio. The RMSE of the inversion value is 2.23%, which can meet the requirement of the accuracy of soil moisture inversion.

参考文献

[1]高峰,王介民,孙成权,等.微波遥感土壤湿度研究进展[J].遥感技术与应用,2001, 16(2):6.

[2]刘伟.植被覆盖地表极化雷达土壤水分反演与应用研究[D].北京:中国科学院研究生院(遥感应用研究所),2005.

[3]鲍艳松,刘良云,王纪华,等.利用ASAR图像监测土壤含水量和小麦覆盖度遥感学报, 2006,10(2):263-271.

[4]李宗谦,冯孔豫.从雷达后向散射系数反演土壤湿度与复介电常数[J].中国科学:E辑, 1997,27(3):6.

[5]Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J].IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):370-381.

[6]Oh Y, Sarabandi K, Ulaby F T. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation[J]. Proceedings of IGARSS'94-1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA,IEEE, 1994:1582-1584.

[7]Dubois P C, Van Zyl J, Engman T. Measuring soil moisture with imaging radars[J].IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4):915-926.

[8]Srinivasa Rao, S., Dinesh kumar, S.,Das, S. N. et al. Modified Dubois Model for Estimating Soil Moisture with Dual Polarized SAR Data[J]. Journal of the Indian Society of Remote Sensing, 2013, 41:865–872.

[9]Aubert, M., Baghdadi, N. N., Zribi,M., et al. Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness,composition and soil crust[J]. Remote Sensing of Environment,2011, 115:1801-1810.

[10]宋书艺.滨海土壤微波介电特性研究[D].杭州:浙江大学,2012.

[11]Jackson T J, Schmugge T J. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment,1991,36(3):203-212.

[12]Li L, Njoku E G, Im E, et al. A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data[J],IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(2):380-390.

[13]赵昕,黄妮,宋现锋,李增元,牛铮.基于Radarsat2与Landsat8协同反演植被覆盖地表土壤水分的一种新方法[J].红外与毫米波学报,2016,35(5):609-616.

[14]Owe M,Jeu R D, Holmes T.Multisensor historical climatology of satellite-derived global land surface moisture[J].Journal of Geophysical Research Earth Surface,2008,113(F1).

[15]金亚秋.电磁散射和热辐射的遥感理论[J].北京:科学出版社,1993,7.

[16]黄芳,徐红松,齐青青.土壤水分测试技术进展[J].安徽农学通报,2007,13(11):76-77.

[17]吴涛,张荣标,冯友兵.土壤水分含量测定方法研究[J].农机化研究,2007(12):213-217.

[18]龚元石,曹巧红,黄满湘.土壤容重和温度对时域反射仪测定土壤水分的影响[J].土壤学报,1999,36(2):145-153.

[19]高国治,张斌,张桃林,等.时域反射法(TDR)测定红壤含水量的精度[J].土壤,1998(1):48-50.

[20]张德海,张俊荣,王丽巍.海洋微波遥感中的介电常数[J].遥感技术与应用, 1994,9(3):43-52.

[21]王学,刘全明,屈忠义,王丽萍,李相君,王耀强.盐渍化土壤水分微波雷达反演与验证[J].农业工程学报,2017,33(11):108-114.

[22]王学.盐渍化灌区土壤介电特性与多源遥感水分反演研究[D].呼和浩特:内蒙古农业大学,2017.

基本信息:

DOI:10.16647/j.cnki.cn15-1369/X.2024.03.010

中图分类号:S152.7;TP79

引用信息:

[1]孙红,王政,玮黎思等.盐渍化土壤水分微波遥感反演方法研究与解析[J].环境与发展,2024,36(03):53-57+108.DOI:10.16647/j.cnki.cn15-1369/X.2024.03.010.

基金信息:

国家自然科学基金“盐渍化农田根层土壤水盐多源遥感数据同化与模拟”(项目批准号52069020); 自治区人才开发基金2021年度高层次人才项目“透水铺装材料对北方初期雨水污染物截留效果的影响研究”(内人社办发[2021]171号)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文